Investigation of the EPR Parameters of a Trigonal Dy³⁺ Center in La₂Mg₃(NO₃)₁₂ · 24H₂O Crystal

Hui-Ning Dong^{a,b}, Shao-Yi Wu^c, and David J. Keeble^b

^a Institute of Applied Physics and College of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China

^b Division of Electronic Engineering and Physics, University of Dundee, Dundee DD1 4HN, UK ^c Department of Applied Physics, University of Electronic Science and Technology of China,

Reprint requests to H.-N. D.; E-mail: donghn@163.com

Chengdu 610054, P. R. China

Z. Naturforsch. **62a**, 343 – 346 (2007); received February 27, 2007

parameters A_{\parallel} and A_{\perp} of $^{161}\mathrm{Dy^{3+}}$ and $^{163}\mathrm{Dy^{3+}}$ in a La₂Mg₃(NO₃)₁₂ · 24H₂O crystal are calculated by the perturbation formulas of the EPR parameters for a 4f⁹ ion in trigonal symmetry. In these formulas, the *J*-mixing among the $^{6}\mathrm{H}_{J}$ (J=15/2, 13/2 and 11/2) states via crystal-field interactions, the mixtures of the states with the same *J*-value via spin-orbit coupling interaction and the interactions between the lowest Kramers doublet Γ_{Y} and the same irreducible representations in the other 20 Kramers doublets Γ_{X} via the crystal-field and orbital angular momentum (or hyperfine structure) are all considered. The crystal-field parameters for the studied Dy³⁺ center are obtained with the superposition model. The calculated results are in good agreement with the observed values.

The electron paramagnetic resonance parameters g_{\parallel} and g_{\perp} of Dy³⁺, and the hyperfine structure

Key words: Crystal-Field Theory; Electron Paramagnetic Resonance; Dy³⁺; La₂Mg₃(NO₃)₁₂ · 24H₂O.